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Abstract. In this paper, we consider the semi-supervised clustering
problem, where the prior knowledge is formalized as the Cannot-Link
(CL) and Must-Link (ML) pairwise constraints. We propose an algo-
rithm called SemiSync that tackles this problem from a novel perspec-
tive: synchronization. The basic idea is to regard the data points as a
set of (constrained) phase oscillators, and simulate their dynamics to
form clusters automatically. SemiSync allows dynamically propagating
the constraints to unlabelled data points driven by their local data dis-
tributions, which effectively boosts the clustering performance even if
little prior knowledge is available. We experimentally demonstrate the
effectiveness of the proposed method.
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1 Introduction

Clustering with a priori knowledge is referred to as constrained clustering or
semi-supervised clustering. Extensive studies have shown that once a priori
knowledge (commonly formalized as instance-level Cannot-Link (CL) and Must-
Link (ML) pairwise constraints) is incorporated, the clustering performance can
be greatly improved. In this paper, we are going to tackle the semi-supervised
clustering problem from a different perspective: synchronization.

Sync [4] along with its variants [7–9] are novel clustering models, which are
derived from an interesting physical phenomenon synchronization. It basically
defines a discrete dynamic system. The idea is to regard each object as a phase
oscillator and simulate the local interaction behavior with its neighborhood over
time under a specified interaction model. As time evolves, similar objects will
synchronize together and form distinct clusters. Inspired by Sync, we develop
a novel semi-supervised clustering method called SemiSync. It incorporates CL
and ML constraints in an intuitive way by introducing an additional global inter-
action paradigm. Thanks to the dynamic property, once two or more objects have
synchronized together over time (i.e., they have the same position), they can be
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merged into a prototype. This provides a natural way to propagate the con-
straints within the synchronized objects. Therefore SemiSync supports to find
high-quality clusterings even if only limited prior knowledge is available.

2 The Proposed Method

We first introduce some notations. xi(t) denotes the i-th data point at the t-th
time stamp. For brevity, we omit the time stamp in the following statement. Let
pi denote the i-th prototype and wi denote the weight of pi. wi is the number of
data points that pi represents, we will explain them later. C = {(xi,xj)|li �= lj}
and M = {(xi,xj)|li = lj} denote the CL and ML constraint sets, respectively,
where li is the label of the i-th data points. For convenience, we use C(xi) =
{xj |(xi,xj) ∈ C} and M(xi) = {xj |(xi,xj) ∈ M} to denote a set of data points
that cannot link and must link to xi, respectively. N c

ε (xi) = {xj |dist(xi,xj) ≤
ε, (xi,xj) /∈ C)} denotes the exclusive ε-range neighborhood.

The overall clustering algorithm is a discrete dynamic system, which simply
requires a interaction model and a stopping criterion. Different from [4], we define
the dynamic system over a set of prototypes rather than original data points.
We first present the interaction model and explain it in details.

Definition 1 (Semi-supervised Interaction Model). Given the prototype
pi ∈ R

m and its neighbors’ weights wj at the t-th iteration, the constraint sets
C and M. The semi-supervised interaction model is defined as follows.

pi ←− pi +
α

∑
pj∈N c

ε (pi)
wj sin(pj − pi)

∑
pj∈N c

ε (pi)
wj

+
(1 − α)

∑
pj∈ ˜M(pi)

wj sin(pj − pi)
∑

pj∈ ˜M(pi)
wj

−
∑

pj∈C(pi)
aijwj sin(pj − pi)

∑
pj∈C(pi)

wj
,

(1)

Note that on the right side the second term is the original local synchro-
nization interaction [4]. The last two terms are the global synchronization
and desynchronization interaction for the ML and CL constraints, respectively.

M̃(pi) = M(pi) \ N c
ε (pi) makes no duplicate interaction. aij = e− ||p i−p j ||2

2ε2 is a
decay weight for desynchronization. Since we only need to desynchronize cannot-
link points when they are significantly close and prevent side effect from other
distant cannot-link points. α ∈ [0, 1.0] is a parameter that balances the local
and global synchronization. We need to restrict the synchronization coupling
strength to 1 to ensure convergence.
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During the dynamic interaction process some data points may synchronize
together, i.e., they have the identical positions at the end of the t-th time
stamp. A prototype is a representative of the synchronized data points. The
synchronized data points will have the identical interaction behaviors, thus we
can replace the original data points with prototypes with proper weights. The
advantages are, the number of prototypes is monotonically decreasing as the
iteration proceeds, which significantly alleviates the computation and memory
burden. More importantly, it provides a natural way to propagate constraints.

We assume the pairwise constraint links are local consistent. Thereby, a pro-
totype can inherit all the constraints from the merging points. However, it must
be careful with the conflict. Suppose we have two synchronized points xi and xj ,
they can merge into a prototype pi only when the following two conditions are
satisfied: (1) Mc(xi) ∩ C(xj) = ∅; (2) Mc(xj) ∩ C(xi) = ∅. Mc(xi) is a must-
link closure of xi since ML constraints are transitive. Note the constraints are
propagated in a local way, which prevents the error constraints from spreading.

Finally, we define an adjusted cluster order parameter ra to indicate conver-
gence. The algorithm stops when ra reaches to 1.0 or barely changes.

Definition 2 (Adjusted Cluster Order Parameter). The adjusted cluster
order parameter characterizes the degree of synchronization defined as follows.

ra =
1
N

N∑

i=1

1
|N c

ε (pi) ∪ M(pi)|
∑

pj∈N c
ε (pi)∪M(pi)

e−||pj−pi||. (2)

3 Experiments

We evaluate the semi-supervised clustering performance of the proposed method
on eight real-world data sets from the UCI and UCR repositories. For compari-
son, we select six typical different type of semi-supervised clustering algorithms.
It includes MPCK-means [3], LCVQE [5], CECM [2], C1SP [6], CPSNMF [10]
and SKMS [1]. We use two unsupervised clustering algorithms Sync and K-
means as the baseline. All data sets are normalized to [0, π]. For all algorithms,
we exhaustively tune their parameters to achieve the best performance.

Figure 1 shows the semi-supervised clustering results on all eight real-world
data sets while varying the number of pairwise constraints. Overall, SemiSync
achieves the best results on all data sets except for the Car data set, but it
still yields the second best result. SemiSync can work well when only a few
constraints are incorporated. The rationale is that SemiSync propagates the
constraints building upon the local and global interactions, simultaneously.
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Fig. 1. Semi-supervised clustering results. *Some experiments are aborted due to
unsolvable issues: CECM on Plan, Glass, Car.

4 Conclusion

We propose a novel semi-supervised clustering algorithm SemiSync from a dif-
ferent perspective: synchronization. SemiSync utilizes the local and global inter-
action paradigms to preserve the intrinsic structure of the data set and incorpo-
rate the pairwise constraints. Besides, SemiSync supports an intuitive constraint
propagation, which helps improve the clustering performance. We experimentally
demonstrate the effectiveness of the proposed method.
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